Table I. Yield and Characterization Data for $\mathrm{B}_{n} \mathrm{C}_{2} \mathrm{H}_{n+2}$ Species

Compound	Mp, ${ }^{\circ} \mathrm{C}$	$\underset{(\mathrm{mm})}{\mathrm{Bp},{ }^{\circ} \mathrm{C}}$	$\begin{gathered} \text { Yield,b } \\ \% \end{gathered}$	$\begin{gathered} \text { Yield,c } \\ \% \end{gathered}$						
$\mathrm{B}_{6} \mathrm{C}_{2} \mathrm{H}_{6}\left(\mathrm{CH}_{3}\right)_{2}$	(-40.4)-(39.4) ${ }^{\text {a }}$	62 (134)	30	0	38.43	9.68	51.89	37.42	9.82	52.10
$\mathrm{B}_{-} \mathrm{C}_{2} \mathrm{H}_{7}\left(\mathrm{CH}_{3}\right)_{2}$	$(-22)-(-21.3)^{2}$		7	0	35.11	9.58	55.31	35.14	9.74	55.76
1,6- $\mathrm{B}_{8} \mathrm{C}_{2} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{2}$	$1.0-1.6^{\text {a }}$	73 (32)	28	41	32.32	9.49	58.18	31.97	9.69	57.84
$1,10-\mathrm{B}_{8} \mathrm{C}_{2} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{2}$	26.5-27.5 ${ }^{\text {a }}$		$95^{\text {d }}$		32.32	9.49	58.18	33.35	9.67	57.63
1,7- $\mathrm{B}_{10} \mathrm{C}_{2} \mathrm{H}_{10}\left(\mathrm{CH}_{3}\right)_{2}{ }^{e}$	170		0	8	27.89	9.36	62.75	27.80	9.21	62.61

${ }^{a}$ In sealed capillary. ${ }^{b}$ When prepared in the absence of diborane. ${ }^{c}$ When prepared in the presence of diborane. ${ }^{d}$ Prepared from $1,6-$ $\mathrm{B}_{8} \mathrm{C}_{2} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{2}$. \quad e Although several C-substituted derivatives of $1,7-\mathrm{B}_{10} \mathrm{C}_{2} \mathrm{H}_{12}$ have been reported [D. Grafstein and J. Dvorak, Inorg. Chem., 2, 1128 (1963)], the 1,7-dimethyl-derivative has not been previously characterized. We thank F. P. Olsen for a sample of the authentic material.
structure should contain a single methyl proton resonance. Only one line is observed at $\tau 7.84$.
$\mathrm{B}_{7} \mathrm{C}_{2} \mathrm{H}_{7}\left(\mathrm{CH}_{3}\right)_{2}$. The $19.3-\mathrm{Mc} / \mathrm{sec}{ }^{11} \mathrm{~B} \mathrm{nmr}$ spectrum of $\mathrm{B}_{7} \mathrm{C}_{2} \mathrm{H}_{7}\left(\mathrm{CH}_{3}\right)_{2}$ is presented in Figure 2. Three types of boron atoms are evident in the ratios $1: 2: 4$. The doublet of area 1 at lowest field may be assigned to a boron atom in an apical position ${ }^{5}$ as in $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{-2}$. Such an assignment and the available data suggest the

Figure 3. (A) The bicapped Archimedean antiprism geometry. (B) The $19.3-\mathrm{Mc} / \mathrm{sec}^{11} \mathrm{~B} \mathrm{nmr}$ spectrum of the proposed 1,6 isomer of $\mathrm{B}_{8} \mathrm{C}_{2} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{2}$. Chemical shifts, ppm (with reference to $\mathrm{BF}_{3} \mathrm{O}$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right)$, and coupling constants (cps) for the indicated peaks are (a) -19.8 (178), (b) +15.3 (apparent, 167), and (c) +22.9 (apparent, 128). Integrated areas are indicated beneath the peaks. (C) The $19.3-\mathrm{Mc} / \mathrm{sec}{ }^{11} \mathrm{~B} \mathrm{nmr}$ spectrum of the proposed 1,10 isomer of $\mathrm{B}_{8} \mathrm{C}_{2} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{2}$. The chemical shift (with reference to $\left.\mathrm{BF}_{3} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right)$ and coupling constant are +10.3 ppm and 162 cps , respectively.
$\mathbf{B}_{8} \mathrm{C}_{2} \mathbf{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}$ Isomers. Figure 3 presents the 19.3$\mathrm{Mc} / \mathrm{sec}{ }^{11} \mathrm{~B} \mathrm{nmr}$ spectrum (B) of the $\mathrm{B}_{8} \mathrm{C}_{2} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)_{2}$ isolated from the initial pyrolysis reaction and the spectrum (C) of the isomer which results from thermal rearrangement. The low-field doublet of area 1 in spectrum B suggests a single apical boron atom ${ }^{\text {a }}$ and would place one carbon atom at the opposite apical position of a $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{-2}$ polyhedron. Since it is unlikely that the two carbon atoms are nearest neighbors, the second carbon atom may be placed in the second equatorial belt removed from the apical carbon atom. Such a 1,6 arrangement of carbon atoms should give nonequivalent methyl proton resonances as observed. The two methyl resonances appear as sharp singlets of equal intensity at $\tau 7.19$ and 8.68 .

The spectrum C (Figure 3) is a sharp doublet which suggests the equivalence of all eight boron atoms. If the $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{-2}$ polyhedron is again employed as the framework model, the carbon atoms are uniquely placed at the apical $(1,10)$ positions. The methyl proton resonances were observed as one sharp singlet at $\tau 7.22$, and this result is in agreement with the 1,10 carbon assignment. The observed thermal rearrangement thus constitutes a polyhedral rearrangement of the 1,6 isomer to the 1,10 isomer. The latter material is expected to be the most stable isomer of the $\mathrm{B}_{3} \mathrm{C}_{2} \mathrm{H}_{10}$ system owing to the favorable coordination numbers of 5 and 6 for carbon and boron, respectively. ${ }^{1}$

The work briefly described here is being extended to other members of the $\mathrm{B}_{6}, \mathrm{~B}_{7}$, and B_{8} carborane systems along with derivative and reaction chemistry.

Acknowledgment. This research was supported by the National Cancer Institute, U. S. Public Health Service, under Grant CA-06773MCHB. The authors express their thanks for this support.
(6) Alfred P. Sloan Research Fellow.

Fred N. Tebbe, Philip M. Garrett
Donald C. Young, M. Frederick Hawthorne ${ }^{\text {B }}$
Department of Chemistry, University of California Riverside, California
Received November 8, 1965

Concerning the Photolysis of the Sodium Salt of (Δ^{2}-2,3-Diphenylcyclopropenyl)carboxaldehyde Tosylhydrazone

Sir:
Recently we reported that the photolysis of the title compound provided diphenyltetrahedrane in 0.1% yield. ${ }^{1}$ However, we must retract our claim for the
(1) S. Masamune and M. Kato, J. Am. Chem. Soc., 87, 4190 (1965).
synthesis of this compound (I) on the basis of the following evidence: the integral ratio of aliphatic protons (at $\tau 6.67$) to aromatic protons of I is $1: 2$, different from that reported previously. The only conceivable explanation for this difference is that the purity of samples used for various spectroscopic measurements differed, and apparently that for the nmr spectrum was impure.

In view of the similarity of the ultraviolet spectrum of I to that of phenanthrene, two structures, II and III, are proposed for this $\mathrm{C}_{16} \mathrm{H}_{12}$ compound. ${ }^{2}$ The former compound is known ${ }^{3}$ and the latter unknown. Although

II

III
the melting point and ultraviolet spectrum of II are very similar of those of I, we prefer III as the more probable structure for I. The formation of III is at least mechanistically feasible, but no reasonable pathway to II seems conceivable. A definite structure assignment will be reported. ${ }^{4}$
(2) Professor E. H. White, in a recent private communication, has kindly suggested III as a possibility.
(3) C. S. Marvel and B. D. Wilson, J. Org. Chem., 23, 1483 (1958). Also see N. Jonathan, S. Gordon, and B. P. Dailey, J. Chem. Phys., 36, 2443(1962).

Satoru Masamune, Masahiko Kato
Department of Chemistry, University of Alberta Edmonton, Alberta, Canada
Received December 18, 1965

The Synthesis and Properties of Diphenylcyclopropenyldiazomethane, and a Structural Reassignment for the So-called Diphenyltetrahedrane

Sir:
Theorists seem to agree that planar cyclobutadiene (I) will be unstable with respect to distortions that yield filled electronic levels that are more stable, ${ }^{1}$ and since a bending distortion could lead to tetrahedrane II, it was of interest to examine on independent synthesis of the latter type of compound.

We have prepared diphenylcyclopropenyldiazomethane (III) in the hope that thermally or on irradiation it would yield either an isolable tetrahedrane (IV) ${ }^{2}$ or else, in view of the expected lability of this intermediate, dimeric products ${ }^{3}$ derived from 1,3diphenylcyclobutadiene.

1,2-Diphenylcyclopropenyldiazomethane (III) was prepared in seven steps from 1,2-diphenylcyclopropen-yl-3-carboxylic acid (see Table I for experimental details). ${ }^{4}$ All of the compounds cited in Table I
(1) W. N. Lipscomb, Tetrahedron Letters, No. 18, 20 (1959).
(2) A related cyclopropane synthesis is given by G. Stork and J. Ficini, J. Am. Chem. Soc., 83, 4678 (1961).
(3) E. H. White and H. C. Dunathan, ibid., 86, 453 (1964).
(4) R. Breslow, R. E. K. Winter, and M. Battiste, J. Org. Chem., 24, 415 (1959).

gave satisfactory elemental analyses and showed fine structure in the ultraviolet characteristic of the diphenylcyclopropenyl system.

Table I. Preparation of

Compd	X	Reagents	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$
VIIIa	$\mathrm{CO}_{2} \mathrm{H}$		209 (1it ${ }^{\text {4 }}$ 209-211)
b	COCl	$\mathrm{SOCl}_{2}\left(25^{\circ}\right)$	100.7-101.2
	$\mathrm{CO}_{2} \mathrm{NH}_{2}$	$\mathrm{NH}_{3}\left(25^{\circ}\right)$	276
d	CN	Tosyl chloride + pyridine $\left(0^{\circ}\right)$	117
e	$\mathrm{CH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}$	$\mathrm{LiAlH}_{4}\left(-30^{\circ}\right)$	222-224 dec
f	$\mathrm{CH}_{2} \mathrm{NHCO}_{2} \mathrm{CH}_{3}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{OCOCl} \\ \left(-15^{\circ}\right) \end{gathered}$	107
g	$\mathrm{CH}_{2} \mathrm{~N}(\mathrm{NO}) \mathrm{CO}_{2} \mathrm{CH}_{3}$	$\mathrm{N}_{2} \mathrm{O}_{4}\left(-75^{\circ}\right)$; NH_{3} to destroy excess	82-84
h	$\mathrm{CH}_{2} \mathrm{OH}$		68.3-69.6
i	$\underset{\left(\mathrm{NO}_{2}\right)_{2}-3,5}{\mathrm{CH}_{2} \mathrm{OCOC}_{6} \mathrm{H}_{3}-}$		154-154.5

The cyclopropenyldiazomethane was usually prepared at 0° by the reaction of compound VIIIg with solid sodium methylate still containing some methanol of solvation. The reaction was rapid and, judging from the intensity of the diazo peak in the infrared at $4.88 \mu\left(2050 \mathrm{~cm}^{-1}\right.$ in $\left.\mathrm{CCl}_{4}\right)$, yields of about 80% were obtained. The diazo compound III proved to be abnormally sensitive to protic compounds (water, methanol, etc.) and therefore the diazo compound could not be separated from the other products of the reaction. Furthermore, the compound was also very sensitive to oxygen, and the syntheses were therefore carried out in evacuated systems. In dilute solution (oxygen-free) the compound had a half-life of about 30 \min at 25°. In concentrated solutions the diazo group was lost rapidly, and for this reason the nmr spectrum could not be taken. The infrared spectra

